Relaxation phenomena of automotive TPEs

By Abraham Pannikotu, Jerry J. Leyden, and Michael S. Fulmer, Akron Rubber Development Laboratory Inc.

Historically, the use of thermoplastic elastomers in severe service environments has been limited by TPEs' inherent intrinsic properties. The "hasten" grades of most TPEs possess neither high temperature nor oil/solvent-resistance to displace the thermoset elastomers that have dominated severe service applications for many years.

TECHNICAL NOTEBOOK

Edited by Harold Herzig

With the development of newer thermoplastic elastomers and changing perceptions, however, it is evident that some TPEs, thermoplastic vulcanizates and co-polymers are finding expanding markets in these environments as the press toward TPEs with improved heat- and solvent-resistance continues to result in more resins in the market place which are performance competitive with TSEs.

One of the TSE mainstays has been automotive engine compartment applications, particularly oil and transmission seal materials. As the industry pursues the manufacture of these improved resins, appropriate performance evaluation tool continues to evolve as well. New test methods are to include single-point material property characterization testing, e.g., stress-strain, hardness and flexural properties, as well as useful when attempting to predict the life expectancy of a part, particularly in severe environments. The advent of computer modeling and finite element analysis as applied to thermoplastic parts is particularly useful in identifying localized stress concentration areas, but is less useful when complicating and transient environmental variables are introduced.

For several years now, manufacturers of high performance TSEs, including Dow Corning STI and General Electric Co., as well as automotive manufacturers, most notably Ford Motor Co. and General Motors Corp., have been investigating the use of compression stress-relaxation testing as a means of predicting the service life of TSE seals in simulated service environments. While most of this test work has emphasized higher service temperatures (150°C and 175°C), other TSE and TPE polymer manufacturers, notably Shell Chemical Co., AES and Zeon Chemicals Inc., have developed an interest in testing for compression stress-relaxation at reduced temperatures (70°C to 125°C).

Fig. 3. Sealing force decay.

At the same time, the Society of Automotive Engineers under the auspices of its CARS subcommittee on Long Term Aging, recently issued SAE J2236 which defines the continuous upper temperature limit for elastomeric materials based on long-term aging performance (10,000 hours).

Also forthcoming from Ford and GM are specification performance standards for automobile seals based on compression stress-relaxation testing, which most likely will replace or be added to existing compression set testing requiring (ASTM D 356). ISO 368 compression stress-relaxation standards have been in existence for some time now.

Defining 'severity'
The term "severe service" as applied to elastomeric materials is commonly associated with hostile temperatures and chemical environments, either singly or more often in combination.

For the manufacturers of TPE components for automotive underhood applications, the term "severity" varies considerably, depending not only on the environmental variables but on the TPE polymer itself. In the family of all TPEs, severity varies considerably. Consequently, service life predictions for an individual TPE should be made only within near-reasonable temperatures and environments.

Accelerated aging

In 1990, Rapra Technology Ltd.'s H.P. Brown conducted a survey on the status of methods for accelerated durability testing of polymers. Input from 350 companies worldwide was solicited. Rapra concluded in part that, "... normally single-point tests are really only effective as (quality assurance) tests and that, "... for thermal effects, the only recognized procedure is Arrhenius." The classic Arrhenius equation, (d ln k) / (d 1/K) = E / R

The authors

Jerry J. Leyden, Abraham Pannikotu and Michael S. Fulmer are officials at Akron Rubber Development Laboratory Inc. Leyden serves as president of the firm. He holds a bachelor's degree in chemistry from Ohio State University and an M.B.A. in management from Akron University. Prior to joining Akron Rubber Development in 1991, he held various technical and managerial positions at Midwest Elastomers Inc., Smithers Scientific Services Inc. and Firestone. Pannikotu is manager of predictive testing. He holds a bachelor's degree in mechanical engineering from the University of South Gujarat in India and a master's degree in polymer science and physics from the University of Akron. Fulmer serves as manager of plastics testing at the Akron-based laboratory. Fulmer holds a bachelor's degree in life sciences from the University of Akron. Before joining Akron Rubber Development, he worked in the physical testing and analytical departments at Chevron Chemical Co.'s polysulfane facility.
Continued from page 15 above linearity, if one carefully chooses a meaningful property that relates to service life, it's possible to predict performance at extrapolated temperatures based on observed results at several actual temperatures. This technique has been used successfully for many years when dealing with thermoset elastomers in severe environments.11,12

Gasketing life expectancy

The automotive industry has focused on the percent of retained sealing force as a function of time as the multipoint parameter for useful service life prediction: When sealing force has decayed to 2.5 percent of the original sealing force, the seal is considered to have failed.

The stress decay of polymer components under constant compressive strain is known as compression stress-relaxation. The test measures the sealing force exserted by a seal or O-ring under compression between two plates (Fig. 1). It provides definite information for the prediction of service life by measuring the sealing force decay of a sample as a function of time, temperature and environment.

The ARDL test apparatus used for the compression relaxation measurements is the ISO 3384 Wykeham Farrance device. This device measures the counter force exserted by a specimen maintained at a constant strain between two stainless steel plates inside the compression jig. The instrument has a variety of jigs for accommodating test pieces or O-rings up to 100 mm outer diameter. Various service environments such as liquid, gas, or a mixture of liquid and gas can be introduced into the stainless steel compression jig and maintained during aging and testing. A typical cross-section view of the compression jig is shown in Fig. 2.

A typical sealing force decay graph of a TPE gasket is shown in Fig. 3. These curves were obtained at 25-percent constant compressive strain at three accelerated aging temperatures (70°F, 85°C and 100°C). In this example, the specimens were aged until an arbitrary "failure point" for retained sealing force is reached, i.e., when the sealing force decays to 25 percent of the original unaged sealing force. Sealing force readings may be found in Fig. 4.

Fig. 5 is the Arrhenius service life plot from data obtained from the three decay plots from Fig. 3. The abscissa is the reciprocal of the absolute temperature, but for convenience, the equivalent Celsius temperature is shown.

Compare the single-point compression set data on the two TPEs (Fig. 6) with the multipoint compression stress-relaxation curves (See Figs. 7,8 and 9). Note that TPE #2 does not totally degrade at 100°C, but that TPE #1 does. This data partially explains original equipment manufacturer's preference for the stress-relaxation data.

Besides elevated temperature testing, the environment during compression stress-relaxation also can be varied to obtain data at low temperatures and/or in corrosive, oxidative or fluid environments. An example of multi-media predicted service life curves from a recent TPE study is shown in Fig. 10.

Compression stress-relaxation testing is now underway at ARDL on a variety of elastomeric seals in several "severe" environments for 1,008-hour agings.

The results of a previous study were given in Denver at the ACS Rubber Division meeting in May 1993.

Predictive testing

Data to date has shown two parti-
lar benefits from a TPE perspective:

- Behavioral characteristics of thermoplastic under constant compressive strain;
- The concept of maximum service temperature for TPE seals.

The thermoplastic behavior short term is consistent with compression set results obtained after short duration; thereafter the retained sealing force plateaus in contrast to TSE materials which show progressive deterioration.

As expected, TPEs are more temperature-sensitive than TSE materials, with a tendency to degrade beyond certain temperature limits. While this is a characteristic of thermoplastic material, it can be used to establish the continuous upper temperature for a given material application, particularly when tested in the proper media.

Summary

Compression stress-relaxation is the testing methodology currently being used to assess performance and predict the service life of elastomeric seals in severe environments, and will most likely replace the single-point compression set test on automotive material specifications.

As thermoplastic elastomer materials are developed for more severe-service applications, this testing methodology can be used to predict service life for TPE seals. It can also be used for comparative testing against TPE controls or other TSEs already being used in a particular application.

The life prediction methodology is soundly based on continuous multi-point stress-relaxation coupled with classical Arrhenius aging. Screening TPE materials utilizing this approach yields insight into long-term performance in severe environments.

References


We speak your Rubber and Plastics Process Language

Put FACTS process control in the calendaring, extrusion, sheet, film, coating, converting as well as mixing industries to work for you.

Integrate your equipment, measurement, gauging and control with field-proven FACTS systems.

FACTS proven systems are configured to your specific needs and can be reconfigured and expanded, allowing each system to adapt to your changing environment.

FACTS, Inc. Call today for our FREE demo package.

Specialists in Process Automation and Control
2737 Front Street • Cuyahoga Falls • Akron OH 44221
216-928-2232 • Fax: 216-928-3018

Circle 174 on FastFax card

The Proven Way to Guarantee Quality

Sytronics, Inc.

Sytronics, Inc.

The Sytronics Tread Thickness Profiler measures the thickness of an unused tread in an efficient, accurate, and economic manner to maintain product consistency, and optimize extrusion thickness. Maximum rubber usage control, extrusion symmetry and reduction manufacturing costs with the Tread Thickness Profiler. Systems to the rubber and tire industry. Tread Length Monitors. Sidewall Inspection. Bias Cutter Inspection. Sheet Calender Thickness Monitors.

Circle 175 on FastFax card